The friendly operating system for the IoT!

Emmanuel Baccelli
www.riot-os.org
emmanuel.baccelli@inria.fr
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
The Big Picture: a Giant Collision

- Internet
- Wireless
- Cheap, tiny Hardware

INTERNET OF THINGS
Our Vision of the IoT

• A new world of interconnected hardware
• A new world at the application layer
• A new world in terms of user experience

➡️ Physical Computing
i.e. our interface to the Internet will no longer be predominantly a screen, a keyboard and/or a mouse
The Internet

- Internet
 - > 4GB
 - ~ 2 GB
 - 1-2 GB
 - 512 MB
The Internet of Things

Internet

> 4GB

~ 2 GB

1-2 GB

512 MB

16 KB

8 KB

96 KB

IoT = programmable world
The IoT is already here

- Tiny, cheap & exciting new devices pop up daily
- Mostly equipped with Atmel AVR, TI MSP430, or increasing numbers of ARM Cortex-M MCUs
- Typically running with a CPU frequency < 100MHz and less than 100 kB RAM

- Arduino Uno board
 8-bit Atmel AVR

- TI eZ430 Chronos watch
 16bit MSP 430
 sub-GHz radio

- HiKoB boards
 32bit ARM Cortex-M3
 2.4 GHz radio

- Smart Dust
But : No IoT Until...

- ... a **software big-bang** happens

 - Similar to mobile phone industry since 2007 with iOS and Android dominance
 - Must have: de facto standard OS, providing **consistent** API & SDK across-hardware platforms
IoT: The Operating System Question

IoT = programmable world
RIOT: The Friendly OS for the IoT

Internet

- Windows
- Apple
- Linux
- Android
- Mobile
- Raspberry Pi
- IoT devices

IoT = programmable world
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
Wishlist for an IoT Operating System

An operating system for the IoT should:

- Support heterogeneous hardware
- Have a low memory footprint
- Provide interoperability with the Internet
- Make applications portable
Developing for the IoT

It should be **easy to program**, with support for:

- standard programming languages & techniques
- well known APIs (e.g. POSIX sockets)
- familiar debugging tools
- on-chip debugging capabilities
- comprehensive documentation
Developing for the IoT

It should be **secure & independent**:

- open source
- vendor-independent
- cloud-independent
- architecture-independent (8-bit, 16-bit, 32-bit)
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
 • Zoom on connectivity
 • Zoom on portability
 • RIOT as a platform for experiments
• Join the RIOT
Meet RIOT

• Free, open source (LGPLv2.1) operating system for IoT
 − Write your code in ANSI-C or C++
 − Compliant with the most widely used POSIX features like pthreads and sockets
 − No IoT hardware needed for development

• Run & debug RIOT as native process in Linux
RIOT Specs

• Microkernel architecture (for robustness)
 – The kernel itself uses ~1.5K RAM @ 32-bit
• Tickless scheduler (for energy efficiency)
• Deterministic O(1) scheduling (for real-time)
• Low latency interrupt handling (for reactivity)
• Modular structure (for adaptivity)
• Preemptive multi-threading & powerful IPC

AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
RIOT Supports Several Network Stacks

- BSD-like ports for: OpenWSN, LibCoAP
- What's already there:
 - Application layer (CoAP, CBOR), Transport layer (UDP, TCP), Network layer (IPv6, 6LoWPAN, RPL, CCN-lite), Link layer (IEEE 802.15.4 and 802.15.4e support)
 - Nativenet: network emulation & debugging
- On-going:
 - Bluetooth LE link layer support, Cooja and ns-3 simulator support, AODVv2, OLSRv2, & more...
Towards a Flexible Embedded Stack Design

Traditional Network Stack Architecture

RIOT Network Stack Redesign
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
Code for RIOT is Portable

• Code your **application** once & run it everywhere
 – Mostly 32-bit platforms, but 8-bit and 16-bit platforms are supported, too
 – Independent from vendor-specific solutions

• Easy porting of RIOT to **new hardware**
 – Porting is a matter of hours, or days
 – e.g. support for new ARM Cortex-M boards is ‘trivial’
Portable Architecture

Zoom on Board & CPU

- Board:
 - Pin Configuration
 - Board Initialization
 - Clock Initialization

- CPU:
 - Power Management
 - Startup Code
 - Newlib Syscalls
 - Task switching and Stack handling
 - Interrupt Handling

Hardware independent
- Drivers
- Sys
- Core (Micro-Kernel)

Hardware dependent
- Board
- Low-level Driver
- CPU
- Low-level Driver Layer

Legend:
- Red: must have
- Green: must have but shared by all ports with same architecture
- Grey: optional for initial porting
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
RIOT Runs on Open Testbed Hardware

- Comprehensive support for IoT-LAB M3 open node, including:
 - Full support of AT86RF231 radio chip
 - Support for all sensors (light, temperature, pressure, gyro, accelero-/magnetometer)
 - Support for the micro-controller (STM32f1 ARM Cortex M3)
RIOT as a Platform for Experiments

- Upcoming tutorial: RIOT use on IoT-LAB
 - Testing a distributed IoT application
 - Sensor monitoring & IPv6/6LoWPAN

- Other uses:
 - Emulation of virtual networks without changes to RIOT code
 - Connect real nodes to virtual topologies of RIOT instances
 - Experiments with new protocols & concepts for the IoT
 (e.g. content-centric networking)
 - Low learning curve => RIOT as a teaching platform
AGENDA

• Our vision of the IoT
• Wishlist for an IoT operating system
• RIOT specs
• Zoom on connectivity
• Zoom on portability
• RIOT as a platform for experiments
• Join the RIOT
In a Nutshell : RIOT is Accessible

• The goal is to be the **fastest coding platform:**
 – code your IoT app or your IoT protocol in one afternoon

• Designed to be **interoperable:**
 – standard APIs & standard network protocols
 – Contiki could run as a RIOT thread (but not the reverse ;)
 – RIOT can run as a Linux process

• Designed to be a **modular solution:**
 – from kernel-only to full stack including hardware support, network stacks, schedulers & your favorite API (POSIX, Arduino coming soon ?)
Join the RIOT

- Open source community
- ~150 forks on GitHub
 https://github.com/RIOT-OS/RIOT
- ~150 people on the developer mailing list: devel@riot-os.org
- Developers from all around the world
- Support & discussions on IRC:
 irc.freenode.org #riot-os
- ~500 followers on Twitter