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Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

Slides are online available at http://riot-os.org/files/2015-riotlab-tutorial.pdf.
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Prepare for a RIOT
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Prepare for a RIOT Prepare your Toolchain

Recommended Build Environment

For the IoT-Lab nodes we recommend to use gcc-arm-embedded toolchain.
It can be found on https://launchpad.net/gcc-arm-embedded.

A quick guide to install the proper toolchain can be found in the RIOT wiki:
http://wiki.riot-os.org/Setup-a-Build-Environment

See also http://wiki.riot-os.org/Board:-IoT-LAB-M3 for particular information on
RIOT on the IoT-Lab nodes.

For the native port you have to install 32bit libraries.
See http://wiki.riot-os.org/Family:-native#toolchains
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Prepare for a RIOT Obtain the Code

Github

git clone https://github.com/RIOT-OS/RIOT.git && \

cd RIOT && git checkout 2015.09

or download the zipped version:
https://github.com/RIOT-OS/RIOT/archive/2015.09.zip

The braver among you may also try the development version...

As a small �x for CLI-tools and getting rid of some warnings please go to
~/iot-lab/parts/cli-tools and type
sudo pip install -e .[secure].
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Prepare for a RIOT Understanding RIOT

The Architecture
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Prepare for a RIOT Understanding RIOT

The Folder Structure

RIOT

boards

iotlab-m3

core

cpu

cortexm_common

stm32f1

dist

doc

drivers

at86rf231

isl29020

examples

hello-world

pkg

libcoap

sys

net

gnrc

tests
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Prepare for a RIOT Understanding RIOT

Best Practice for RIOT programming

Dos
Use static memory
Select the priorities carefully
Minimize stack usage with DEVELHELP and CREATE_STACKTEST
Use threads

Donts
Don't use threads

Don't use the POSIX wrapper if implementing something from scratch

Consult the Wiki: http://wiki.riot-os.org

...and the API documentation: http://doc.riot-os.org
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Prepare for a RIOT Understanding RIOT

Best Practice for RIOT programming

Dos
Use static memory
Select the priorities carefully
Minimize stack usage with DEVELHELP and CREATE_STACKTEST
Use threads
Increase �exibility, modularity, and robustness by using IPC.

Donts
Don't use threads
Try not to use more than one thread per module.
Don't create threads for one-time tasks.
Don't use the POSIX wrapper if implementing something from scratch

Consult the Wiki: http://wiki.riot-os.org

...and the API documentation: http://doc.riot-os.org
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Using RIOT on native and the Testbed
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Using RIOT on native and the Testbed Working with an Example

Compile and run on native

Let's prepare a simple, virtual network:

[RIOT]# dist/tools/tapsetup/tapsetup -c 2
creating tapbr0
creating tap0
creating tap1

Now we build and start the �rst virtual node.

[RIOT]# cd examples/default/
[default]# make all term
Building application default for native w/ MCU native.
"make" -C /home/oleg/git/RIOT/cpu/native
...
RIOT native board initialized.
RIOT native hardware initialization complete.

main(): This is RIOT! (Version: 2015.09 - tbilisi -HEAD)
Native RTC initialized.
Welcome to RIOT!
> help
Command Description
---------------------------------------
reboot Reboot the node
ps Prints information about running threads.
rtc control RTC peripheral interface
ifconfig Configure network interfaces
txtsnd send raw data
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Using RIOT on native and the Testbed Working with an Example

Setup the second Node

Ok, how about a second node?
Therefore, we specify the tap interface to use by (re-)using the PORT environment variable. We
can use any created tap interface from the previous step. (Default is tap0.) Once the node has
started, we check its radio address.

[default]# PORT=tap1 make term
Welcome to RIOT!
> ifconfig
Iface 4 HWaddr: 8a:c2:b6:72:eb:57

Source address length: 6
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Using RIOT on native and the Testbed Working with an Example

Connecting the two Nodes

It's time to send our �rst packet (assuming that the �rst node is still running.). Go back to the
�rst node and type:

> txtsnd 4 8a:c2:b6:72:eb:57 riotlab

On the second node we should see something like:

PKTDUMP: data received:
~~ SNIP 0 - size: 7 byte , type: NETTYPE_UNDEF (0)
000000 72 69 6f 74 6c 61 62
~~ SNIP 1 - size: 20 byte , type: NETTYPE_NETIF (-1)
if_pid: 4 rssi: 0 lqi: 0
src_l2addr: a6:b7:d0:ea:de:f9
dst_l2addr: 8a:c2:b6:72:eb:57
~~ PKT - 2 snips , total size: 27 byte
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Using RIOT on native and the Testbed Working with an Example

Using the same example on the testbed

Running the same example on a real node is very similar.
We use the environment variable BOARD to specify the target platform � and IOTLAB_ variables for
testbed con�guration.

[default]# BOARD=iotlab -m3 IOTLAB_SITE=lille IOTLAB_DURATION =60 make all
iotlab -exp

Building application "default" for "iotlab -m3" with MCU "stm32f1"
"make" -C /tmp/RIOT/boards/iotlab -m3
...
Waiting that experiment 29409 gets in state Running
"Running"

And now connect to the nodes using the serial_aggregator:

[default]# BOARD=iotlab -m3 IOTLAB_SITE=lille make iotlab -term
Connection to lille.iot -lab.info closed.
1444752645.849845; Aggregator started
ifconfig
1444752749.523268;m3 -13; ifconfig
1444752749.523673;m3 -9; ifconfig
1444752749.525317;m3 -9; Iface 4 HWaddr: 9d:12 Channel: 26 NID: 0x23

TX -Power: 0dBm State: IDLE CSMA Retries: 4
1444752749.525976;m3 -13; Iface 4 HWaddr: 96:16 Channel: 26 NID: 0x23

TX-Power: 0dBm State: IDLE CSMA Retries: 4
...
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Using RIOT on native and the Testbed Using an IPv6 Application

The Shell in a Nutshell

For this step we will use gnrc_networking application from examples directory.

You can con�gure RIOT to provide you with some default system shell commands.

All available shell commands and some online help are shown by calling help:

> help
help
Command Description
---------------------------------------
udp send data over UDP and listen on UDP ports
reboot Reboot the node
ps Prints information about running threads.
ping6 Ping via ICMPv6
mersenne_init initializes the PRNG
mersenne_get returns 32 bit of pseudo randomness
ifconfig Configure network interfaces
txtsnd send raw data
fibroute Manipulate the FIB (info: 'fibroute [add|del]')
ncache manage neighbor cache by hand
routers IPv6 default router list
rpl rpl configuration tool [help|init|rm|root|show]

The selection of commands depends on the con�guration of your application (and may vary a
little bit for di�erent platforms).
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Using RIOT on native and the Testbed Using an IPv6 Application

Let's communicate

The gnrc_networking application provides you with some helpful shell commands:

1 ping: The famous ICMP diagnosis tool (system command).

2 udp: A very basic command for arbitrary UDP connections (application command).

After we �ashed two nodes, we'll have to �nd out their IPv6 addresses using ifconfig:

m3 -66; ifconfig
Iface 7 HWaddr: 7f:06 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE

CSMA Retries: 4
Long HWaddr: 36:32:48:33:46: d8:7f:06
AUTOACK CSMA MTU :1280 6LO IPHC
Source address length: 8
Link type: wireless
inet6 addr: ff02 ::1/128 scope: local [multicast]
inet6 addr: fe80 ::3432:4833:46 d8:7f06 /64 scope: local
inet6 addr: ff02 ::1: ffd8:7f06 /128 scope: local [multicast]

Now we can try to ping the other node:

> ping fe80::ff:fe00:f01e
INFO # ping fe80::ff:fe00:f01e
INFO # Echo reply from fe80::ff:fe00:f01e received , rtt: 0.0340s

O. Hahm (INRIA) RIOT-Lab October 15, 2015 15 / 26



Using RIOT on native and the Testbed Using an IPv6 Application

Virtualize your Network

You can also monitor the tra�c with Wireshark.

There's a python framework to setup arbitrary topologies using de�ned loss-rates:
http://wiki.riot-os.org/Virtual-riot-network
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Writing an Application for RIOT
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Writing an Application for RIOT Setting up the Application

The Make�le

To create your own RIOT example, you need only two �les:

1 A C (or C++) �le with a main function

2 A Make�le

You can �nd a template for a Make�le in dist/Makefile.

# Giving your application a name
APPLICATION = riotlab1
# Choosing a default platform
BOARD ?= native
# Specifying the RIOT folder
RIOTBASE ?= $(CURDIR)/../../ RIOT
# Some helpful compiler flags
CFLAGS += -DSCHEDSTATISTICS -DDEVELHELP
# Quieten the building process
QUIET ?= 1
# Modules to include:
USEMODULE += posix
USEMODULE += xtimer
USEMODULE += shell_commands
# Let RIOT 's build system take care of the rest
include $(RIOTBASE)/Makefile.include
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Writing an Application for RIOT Setting up the Application

The main() Function

The only mandatory thing in your application is a main function with this prototype:
int main(void)

Standard C libraries can be used and parts of POSIX are ble through a wrapper within RIOT.

#include <stdio.h>
#include <unistd.h>

#define WAIT_USEC (1000 * 1000)

int main(void)
{

puts("Hello!");
usleep(WAIT_USEC);
puts("Good night!");

return 0;
}
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Writing an Application for RIOT Setting up the Application

Doing it the RIOT way

Instead of POSIX functions is usually advisable (and more e�cient) to just use the native RIOT
functions:

#include <stdio.h>
#include "xtimer.h"

int main(void)
{

puts("Let's throw a brick!");
xtimer_usleep(SEC_IN_USEC);
puts("System terminated");

return 0;
}
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Writing an Application for RIOT Some helpful Features

Starting the Shell

#include "shell_commands.h"

static int my_echo(int argc , char **argv);
...
const shell_command_t shell_commands [] = {

{"echo", "Echo the user's input", my_echo},
{NULL , NULL , NULL}

};
...
/* allocate some memory for the input line */
char line_buf[SHELL_DEFAULT_BUFSIZE ];
/* starting the shell loop (blocking) */
shell_run(shell_commands , line_buf , SHELL_DEFAULT_BUFSIZE);
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Writing an Application for RIOT Some helpful Features

Threads and IPC

/* allocate memory for the thread 's stack */
char my_stack[THREAD_STACKSIZE_MAIN ];
/* define a function as entry point for your new thread */
void *my_thread(void *arg) {
...
kernel_pid_t pid = thread_create(my__stack , sizeof(my_thread_stack),

THREAD_PRIORITY_MAIN - 1, CREATE_STACKTEST ,
my_thread , NULL , "mythread");

msg_t m;
m.content.value = 1;
msg_send_receive (&m, &m, pid);
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Writing an Application for RIOT Get your Hands dirty

Now it's up to you

Your task is now to extend the sixlowapp example.

Check the source code of the posix_sockets example and API documentation online:
http://doc.riot-os.org

Check the documentation for the sensor API, e.g. for the light sensor:
http://doc.riot-os.org/group__driver__isl29020.html

Initialize all four sensors in the beginning of the application.

Extend the netcat command to send optionally measured sensor data.

Print the measurements on the receiving side.
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Join the RIOT
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Join the RIOT Getting Support

Where to get help

Mailing Lists
devel@riot-os.org
users@riot-os.org

IRC on irc.freenode.org, #riot-os

Regular video conferencing meetings
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The Last Slide� Q&A

Thank you!
Any questions?
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