
RIOT-Lab
How to use RIOT in the IoT-Lab

Oliver "Oleg" Hahm

INRIA

October 15, 2015

O. Hahm (INRIA) RIOT-Lab October 15, 2015 1 / 26

Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

Slides are online available at http://riot-os.org/files/2015-riotlab-tutorial.pdf.

O. Hahm (INRIA) RIOT-Lab October 15, 2015 2 / 26

http://riot-os.org/files/2015-riotlab-tutorial.pdf

Prepare for a RIOT

Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

O. Hahm (INRIA) RIOT-Lab October 15, 2015 3 / 26

Prepare for a RIOT Prepare your Toolchain

Recommended Build Environment

For the IoT-Lab nodes we recommend to use gcc-arm-embedded toolchain.
It can be found on https://launchpad.net/gcc-arm-embedded.

A quick guide to install the proper toolchain can be found in the RIOT wiki:
http://wiki.riot-os.org/Setup-a-Build-Environment

See also http://wiki.riot-os.org/Board:-IoT-LAB-M3 for particular information on
RIOT on the IoT-Lab nodes.

For the native port you have to install 32bit libraries.
See http://wiki.riot-os.org/Family:-native#toolchains

O. Hahm (INRIA) RIOT-Lab October 15, 2015 4 / 26

https://launchpad.net/gcc-arm-embedded
http://wiki.riot-os.org/Setup-a-Build-Environment
http://wiki.riot-os.org/Board:-IoT-LAB-M3
http://wiki.riot-os.org/Family:-native#toolchains

Prepare for a RIOT Obtain the Code

Github

git clone https://github.com/RIOT-OS/RIOT.git && \

cd RIOT && git checkout 2015.09

or download the zipped version:
https://github.com/RIOT-OS/RIOT/archive/2015.09.zip

The braver among you may also try the development version...

As a small �x for CLI-tools and getting rid of some warnings please go to
~/iot-lab/parts/cli-tools and type
sudo pip install -e .[secure].

O. Hahm (INRIA) RIOT-Lab October 15, 2015 5 / 26

https://github.com/RIOT-OS/RIOT/archive/2015.09.zip

Prepare for a RIOT Understanding RIOT

The Architecture

O. Hahm (INRIA) RIOT-Lab October 15, 2015 6 / 26

Prepare for a RIOT Understanding RIOT

The Folder Structure

RIOT

boards

iotlab-m3

core

cpu

cortexm_common

stm32f1

dist

doc

drivers

at86rf231

isl29020

examples

hello-world

pkg

libcoap

sys

net

gnrc

tests

O. Hahm (INRIA) RIOT-Lab October 15, 2015 7 / 26

Prepare for a RIOT Understanding RIOT

Best Practice for RIOT programming

Dos
Use static memory
Select the priorities carefully
Minimize stack usage with DEVELHELP and CREATE_STACKTEST
Use threads

Donts
Don't use threads

Don't use the POSIX wrapper if implementing something from scratch

Consult the Wiki: http://wiki.riot-os.org

...and the API documentation: http://doc.riot-os.org

O. Hahm (INRIA) RIOT-Lab October 15, 2015 8 / 26

http://wiki.riot-os.org
http://doc.riot-os.org

Prepare for a RIOT Understanding RIOT

Best Practice for RIOT programming

Dos
Use static memory
Select the priorities carefully
Minimize stack usage with DEVELHELP and CREATE_STACKTEST
Use threads
Increase �exibility, modularity, and robustness by using IPC.

Donts
Don't use threads
Try not to use more than one thread per module.
Don't create threads for one-time tasks.
Don't use the POSIX wrapper if implementing something from scratch

Consult the Wiki: http://wiki.riot-os.org

...and the API documentation: http://doc.riot-os.org

O. Hahm (INRIA) RIOT-Lab October 15, 2015 8 / 26

http://wiki.riot-os.org
http://doc.riot-os.org

Using RIOT on native and the Testbed

Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

O. Hahm (INRIA) RIOT-Lab October 15, 2015 9 / 26

Using RIOT on native and the Testbed Working with an Example

Compile and run on native

Let's prepare a simple, virtual network:

[RIOT]# dist/tools/tapsetup/tapsetup -c 2
creating tapbr0
creating tap0
creating tap1

Now we build and start the �rst virtual node.

[RIOT]# cd examples/default/
[default]# make all term
Building application default for native w/ MCU native.
"make" -C /home/oleg/git/RIOT/cpu/native
...
RIOT native board initialized.
RIOT native hardware initialization complete.

main(): This is RIOT! (Version: 2015.09 - tbilisi -HEAD)
Native RTC initialized.
Welcome to RIOT!
> help
Command Description

reboot Reboot the node
ps Prints information about running threads.
rtc control RTC peripheral interface
ifconfig Configure network interfaces
txtsnd send raw data

O. Hahm (INRIA) RIOT-Lab October 15, 2015 10 / 26

Using RIOT on native and the Testbed Working with an Example

Setup the second Node

Ok, how about a second node?
Therefore, we specify the tap interface to use by (re-)using the PORT environment variable. We
can use any created tap interface from the previous step. (Default is tap0.) Once the node has
started, we check its radio address.

[default]# PORT=tap1 make term
Welcome to RIOT!
> ifconfig
Iface 4 HWaddr: 8a:c2:b6:72:eb:57

Source address length: 6

O. Hahm (INRIA) RIOT-Lab October 15, 2015 11 / 26

Using RIOT on native and the Testbed Working with an Example

Connecting the two Nodes

It's time to send our �rst packet (assuming that the �rst node is still running.). Go back to the
�rst node and type:

> txtsnd 4 8a:c2:b6:72:eb:57 riotlab

On the second node we should see something like:

PKTDUMP: data received:
~~ SNIP 0 - size: 7 byte , type: NETTYPE_UNDEF (0)
000000 72 69 6f 74 6c 61 62
~~ SNIP 1 - size: 20 byte , type: NETTYPE_NETIF (-1)
if_pid: 4 rssi: 0 lqi: 0
src_l2addr: a6:b7:d0:ea:de:f9
dst_l2addr: 8a:c2:b6:72:eb:57
~~ PKT - 2 snips , total size: 27 byte

O. Hahm (INRIA) RIOT-Lab October 15, 2015 12 / 26

Using RIOT on native and the Testbed Working with an Example

Using the same example on the testbed

Running the same example on a real node is very similar.
We use the environment variable BOARD to specify the target platform � and IOTLAB_ variables for
testbed con�guration.

[default]# BOARD=iotlab -m3 IOTLAB_SITE=lille IOTLAB_DURATION =60 make all
iotlab -exp

Building application "default" for "iotlab -m3" with MCU "stm32f1"
"make" -C /tmp/RIOT/boards/iotlab -m3
...
Waiting that experiment 29409 gets in state Running
"Running"

And now connect to the nodes using the serial_aggregator:

[default]# BOARD=iotlab -m3 IOTLAB_SITE=lille make iotlab -term
Connection to lille.iot -lab.info closed.
1444752645.849845; Aggregator started
ifconfig
1444752749.523268;m3 -13; ifconfig
1444752749.523673;m3 -9; ifconfig
1444752749.525317;m3 -9; Iface 4 HWaddr: 9d:12 Channel: 26 NID: 0x23

TX -Power: 0dBm State: IDLE CSMA Retries: 4
1444752749.525976;m3 -13; Iface 4 HWaddr: 96:16 Channel: 26 NID: 0x23

TX-Power: 0dBm State: IDLE CSMA Retries: 4
...

O. Hahm (INRIA) RIOT-Lab October 15, 2015 13 / 26

Using RIOT on native and the Testbed Using an IPv6 Application

The Shell in a Nutshell

For this step we will use gnrc_networking application from examples directory.

You can con�gure RIOT to provide you with some default system shell commands.

All available shell commands and some online help are shown by calling help:

> help
help
Command Description

udp send data over UDP and listen on UDP ports
reboot Reboot the node
ps Prints information about running threads.
ping6 Ping via ICMPv6
mersenne_init initializes the PRNG
mersenne_get returns 32 bit of pseudo randomness
ifconfig Configure network interfaces
txtsnd send raw data
fibroute Manipulate the FIB (info: 'fibroute [add|del]')
ncache manage neighbor cache by hand
routers IPv6 default router list
rpl rpl configuration tool [help|init|rm|root|show]

The selection of commands depends on the con�guration of your application (and may vary a
little bit for di�erent platforms).

O. Hahm (INRIA) RIOT-Lab October 15, 2015 14 / 26

Using RIOT on native and the Testbed Using an IPv6 Application

Let's communicate

The gnrc_networking application provides you with some helpful shell commands:

1 ping: The famous ICMP diagnosis tool (system command).

2 udp: A very basic command for arbitrary UDP connections (application command).

After we �ashed two nodes, we'll have to �nd out their IPv6 addresses using ifconfig:

m3 -66; ifconfig
Iface 7 HWaddr: 7f:06 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE

CSMA Retries: 4
Long HWaddr: 36:32:48:33:46: d8:7f:06
AUTOACK CSMA MTU :1280 6LO IPHC
Source address length: 8
Link type: wireless
inet6 addr: ff02 ::1/128 scope: local [multicast]
inet6 addr: fe80 ::3432:4833:46 d8:7f06 /64 scope: local
inet6 addr: ff02 ::1: ffd8:7f06 /128 scope: local [multicast]

Now we can try to ping the other node:

> ping fe80::ff:fe00:f01e
INFO # ping fe80::ff:fe00:f01e
INFO # Echo reply from fe80::ff:fe00:f01e received , rtt: 0.0340s

O. Hahm (INRIA) RIOT-Lab October 15, 2015 15 / 26

Using RIOT on native and the Testbed Using an IPv6 Application

Virtualize your Network

You can also monitor the tra�c with Wireshark.

There's a python framework to setup arbitrary topologies using de�ned loss-rates:
http://wiki.riot-os.org/Virtual-riot-network

O. Hahm (INRIA) RIOT-Lab October 15, 2015 16 / 26

http://wiki.riot-os.org/Virtual-riot-network

Writing an Application for RIOT

Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

O. Hahm (INRIA) RIOT-Lab October 15, 2015 17 / 26

Writing an Application for RIOT Setting up the Application

The Make�le

To create your own RIOT example, you need only two �les:

1 A C (or C++) �le with a main function

2 A Make�le

You can �nd a template for a Make�le in dist/Makefile.

Giving your application a name
APPLICATION = riotlab1
Choosing a default platform
BOARD ?= native
Specifying the RIOT folder
RIOTBASE ?= $(CURDIR)/../../ RIOT
Some helpful compiler flags
CFLAGS += -DSCHEDSTATISTICS -DDEVELHELP
Quieten the building process
QUIET ?= 1
Modules to include:
USEMODULE += posix
USEMODULE += xtimer
USEMODULE += shell_commands
Let RIOT 's build system take care of the rest
include $(RIOTBASE)/Makefile.include

O. Hahm (INRIA) RIOT-Lab October 15, 2015 18 / 26

Writing an Application for RIOT Setting up the Application

The main() Function

The only mandatory thing in your application is a main function with this prototype:
int main(void)

Standard C libraries can be used and parts of POSIX are ble through a wrapper within RIOT.

#include <stdio.h>
#include <unistd.h>

#define WAIT_USEC (1000 * 1000)

int main(void)
{

puts("Hello!");
usleep(WAIT_USEC);
puts("Good night!");

return 0;
}

O. Hahm (INRIA) RIOT-Lab October 15, 2015 19 / 26

Writing an Application for RIOT Setting up the Application

Doing it the RIOT way

Instead of POSIX functions is usually advisable (and more e�cient) to just use the native RIOT
functions:

#include <stdio.h>
#include "xtimer.h"

int main(void)
{

puts("Let's throw a brick!");
xtimer_usleep(SEC_IN_USEC);
puts("System terminated");

return 0;
}

O. Hahm (INRIA) RIOT-Lab October 15, 2015 20 / 26

Writing an Application for RIOT Some helpful Features

Starting the Shell

#include "shell_commands.h"

static int my_echo(int argc , char **argv);
...
const shell_command_t shell_commands [] = {

{"echo", "Echo the user's input", my_echo},
{NULL , NULL , NULL}

};
...
/* allocate some memory for the input line */
char line_buf[SHELL_DEFAULT_BUFSIZE];
/* starting the shell loop (blocking) */
shell_run(shell_commands , line_buf , SHELL_DEFAULT_BUFSIZE);

O. Hahm (INRIA) RIOT-Lab October 15, 2015 21 / 26

Writing an Application for RIOT Some helpful Features

Threads and IPC

/* allocate memory for the thread 's stack */
char my_stack[THREAD_STACKSIZE_MAIN];
/* define a function as entry point for your new thread */
void *my_thread(void *arg) {
...
kernel_pid_t pid = thread_create(my__stack , sizeof(my_thread_stack),

THREAD_PRIORITY_MAIN - 1, CREATE_STACKTEST ,
my_thread , NULL , "mythread");

msg_t m;
m.content.value = 1;
msg_send_receive (&m, &m, pid);

O. Hahm (INRIA) RIOT-Lab October 15, 2015 22 / 26

Writing an Application for RIOT Get your Hands dirty

Now it's up to you

Your task is now to extend the sixlowapp example.

Check the source code of the posix_sockets example and API documentation online:
http://doc.riot-os.org

Check the documentation for the sensor API, e.g. for the light sensor:
http://doc.riot-os.org/group__driver__isl29020.html

Initialize all four sensors in the beginning of the application.

Extend the netcat command to send optionally measured sensor data.

Print the measurements on the receiving side.

O. Hahm (INRIA) RIOT-Lab October 15, 2015 23 / 26

http://doc.riot-os.org
http://doc.riot-os.org/group__driver__isl29020.html

Join the RIOT

Agenda

1 Prepare for a RIOT
Prepare your Toolchain
Obtain the Code
Understanding RIOT

2 Using RIOT on native and the Testbed
Working with an Example
Using an IPv6 Application

3 Writing an Application for RIOT
Setting up the Application
Some helpful Features
Get your Hands dirty

4 Join the RIOT

O. Hahm (INRIA) RIOT-Lab October 15, 2015 24 / 26

Join the RIOT Getting Support

Where to get help

Mailing Lists
devel@riot-os.org
users@riot-os.org

IRC on irc.freenode.org, #riot-os

Regular video conferencing meetings

O. Hahm (INRIA) RIOT-Lab October 15, 2015 25 / 26

The Last Slide� Q&A

Thank you!
Any questions?

O. Hahm (INRIA) RIOT-Lab October 15, 2015 26 / 26

	Prepare for a RIOT
	Prepare your Toolchain
	Obtain the Code
	Understanding RIOT

	Using RIOT on native and the Testbed
	Working with an Example
	Using an IPv6 Application

	Writing an Application for RIOT
	Setting up the Application
	Some helpful Features
	Get your Hands dirty

	Join the RIOT

