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Goals

● Develop new MAC/RDC protocols for WSN 
and IoT, that :

– shall offer high QoS ; and

– minimize energy consumption

For this → we need real-time features
● These new protocols shall be integrated in a 

WSN OS (no "bare metal" programming) for 
portability and ease of use

● Part of project LAR, in the domain of home-
care for aged/dependent people
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Limitations of TinyOS

● Specific language (nesC) more akin to a DSL than 

general-purpose imperative languages 
● Has its own specific paradigms: 

– statically linked callbacks (components)
– unique stack for the whole system
– decomposition into "tasks" that are run 

in a fixed order

→ complex to understand and program
● Now losing momentum
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Limitations of Contiki OS

● Cooperative-only multithreading, with low 
granularity scheduler (128 Hz on MSP430)

● Deals with "protothreads", that impose 
limitations (no separate stacks, switch...) 

● Imperfect, limited real-time mechanism 
(rtimer):

– Only one instance for the whole system

– Apart from a limited set of "interrupt-safe" 
functions, no Contiki code should be called 
from rtimer; otherwise → crash 
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The RIOT OS and its 
advantages

● Efficient, interrupt-driven, tickless microkernel
● Preemptive multitasking, thanks to a priority-

aware scheduler
● Efficient use of hardware timers (all of those 

available on hardware)

→ It is a full-fledged real-time OS

● Coded in standard C (v. ISO 1999)
● Clean and modular design
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RIOT OS: current limitations

● Very recent → some "moving targets"
● A network stack is bundled (contrary to 

FreeRTOS), but no MAC/RDC layer (yet)
● Needs a bit more resources than TinyOS and 

Contiki, especially RAM-wise (design choice: 
separate stacks for each thread)
→ make use of modularity on low-end HW

● Historically developed on ARM architecture
→ other ports a bit less "polished"
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Our contributions

● Debugging features, especially a mechanism 
 to handle fatal errors (core_panic)

● Porting to a production ready MSP430-based 
mote: Zolertia Z1

● Debug the HAL of the system for MSP430 
architecture → MSP430-based systems are 
now usable in a robust way under RIOT 

→ we now have a solid software platform for 
developing high-performance MAC/RDC 
protocols
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Proof of concept: the S-CoSenS 
protocol under RIOT

● Improvement on CoSenS [LCNʹ10] 
● Based on the Receiver-Initiated (RI) 

paradigm
● Idea: collect incoming paquets, then send 

them in burst, sleep when nothing has to be 
done

● A duty cycle then consists in three periods...
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A typical S-CoSenS duty cycle

TPSP WP

Beacon 
broadcast

Beacon 
broadcast

● SP = Sleep Period
● WP = Waiting (reception) Period
● TP = Transmit Period
Beacon broadcast + SP + WP + TP = one duty cycle
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Our (virtual) test PAN setup
using Cooja

Router /
PAN "master"

Sink

7 8 9 106

2 3 4 51
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Use of RIOT real-time features 
for precise synchronisation

● ...between nodes of a PAN
● Just impossible under Contiki (or Tiny OS)
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Performance of S-CoSenS: 
preliminary QoS results

● We consider the rate of packets successfully 
transmitted to destination as the QoS marker

● S-CoSenS do better than ContikiMAC, using 
default parameters (duty cycle of 128ms) :

● More tests currently being made

Protocol / %success Moderate
(6.7 pkt/s)

High 
(10 pkt/s)

Very high 
(20 pkt/s)

Extreme 
(100 pkt/s)

S-CoSenS 96.60 % 94.72 % 85.30 % 17.28 %

ContikiMAC 49.70 % 32.82 % 14.44 % 0.64 %
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Conclusion & Future Works

● We now have a functional and advanced 
software platform to develop our MAC/RDC 
protocols

→ We aim to :
● Develop new protocols as efficient as 

possible
● Provide RIOT OS the MAC/RDC layer that it 

network stack still lacks... and make it the 
best available !
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