
1/15

Implementing a real-time MAC 
protocol under RIOT OS: 

running on Zolertia Z1 motes

Kévin ROUSSEL
INRIA Nancy Grand-Est / LORIA

IoT-Lab, Grenoble, 6 novembre 2014



2/15

Table of contents

● Goals of PhD thesis
● Why we couldn't use TinyOS and Contiki
● The RIOT Operating System and its features 

we needed
● Our contributions to the RIOT project
● The S-CoSenS MAC/RDC protocol
● Preliminary results for S-CoSenS under 

RIOT on Z1
● Conclusion & Future works



3/15

Goals

● Develop new MAC/RDC protocols for WSN 
and IoT, that :

– shall offer high QoS ; and

– minimize energy consumption

For this → we need real-time features
● These new protocols shall be integrated in a 

WSN OS (no "bare metal" programming) for 
portability and ease of use

● Part of project LAR, in the domain of home-
care for aged/dependent people



4/15

Limitations of TinyOS

● Specific language (nesC) more akin to a DSL than 

general-purpose imperative languages 
● Has its own specific paradigms: 

– statically linked callbacks (components)
– unique stack for the whole system
– decomposition into "tasks" that are run 

in a fixed order

→ complex to understand and program
● Now losing momentum



5/15

Limitations of Contiki OS

● Cooperative-only multithreading, with low 
granularity scheduler (128 Hz on MSP430)

● Deals with "protothreads", that impose 
limitations (no separate stacks, switch...) 

● Imperfect, limited real-time mechanism 
(rtimer):

– Only one instance for the whole system

– Apart from a limited set of "interrupt-safe" 
functions, no Contiki code should be called 
from rtimer; otherwise → crash 



6/15

The RIOT OS and its 
advantages

● Efficient, interrupt-driven, tickless microkernel
● Preemptive multitasking, thanks to a priority-

aware scheduler
● Efficient use of hardware timers (all of those 

available on hardware)

→ It is a full-fledged real-time OS

● Coded in standard C (v. ISO 1999)
● Clean and modular design



7/15

RIOT OS: current limitations

● Very recent → some "moving targets"
● A network stack is bundled (contrary to 

FreeRTOS), but no MAC/RDC layer (yet)
● Needs a bit more resources than TinyOS and 

Contiki, especially RAM-wise (design choice: 
separate stacks for each thread)
→ make use of modularity on low-end HW

● Historically developed on ARM architecture
→ other ports a bit less "polished"



8/15

Our contributions

● Debugging features, especially a mechanism 
 to handle fatal errors (core_panic)

● Porting to a production ready MSP430-based 
mote: Zolertia Z1

● Debug the HAL of the system for MSP430 
architecture → MSP430-based systems are 
now usable in a robust way under RIOT 

→ we now have a solid software platform for 
developing high-performance MAC/RDC 
protocols



9/15

Proof of concept: the S-CoSenS 
protocol under RIOT

● Improvement on CoSenS [LCNʹ10] 
● Based on the Receiver-Initiated (RI) 

paradigm
● Idea: collect incoming paquets, then send 

them in burst, sleep when nothing has to be 
done

● A duty cycle then consists in three periods...



10/15

A typical S-CoSenS duty cycle

TPSP WP

Beacon 
broadcast

Beacon 
broadcast

● SP = Sleep Period
● WP = Waiting (reception) Period
● TP = Transmit Period
Beacon broadcast + SP + WP + TP = one duty cycle



11/15

Our (virtual) test PAN setup
using Cooja

Router /
PAN "master"

Sink

7 8 9 106

2 3 4 51



12/15

Use of RIOT real-time features 
for precise synchronisation

● ...between nodes of a PAN
● Just impossible under Contiki (or Tiny OS)



13/15

Performance of S-CoSenS: 
preliminary QoS results

● We consider the rate of packets successfully 
transmitted to destination as the QoS marker

● S-CoSenS do better than ContikiMAC, using 
default parameters (duty cycle of 128ms) :

● More tests currently being made

Protocol / %success Moderate
(6.7 pkt/s)

High 
(10 pkt/s)

Very high 
(20 pkt/s)

Extreme 
(100 pkt/s)

S-CoSenS 96.60 % 94.72 % 85.30 % 17.28 %

ContikiMAC 49.70 % 32.82 % 14.44 % 0.64 %



14/15

Conclusion & Future Works

● We now have a functional and advanced 
software platform to develop our MAC/RDC 
protocols

→ We aim to :
● Develop new protocols as efficient as 

possible
● Provide RIOT OS the MAC/RDC layer that it 

network stack still lacks... and make it the 
best available !



15/15

Main References

● [RIOT] Hahm, O., Baccelli, E., Gu �nes, M., Wa� hlisch, M., 
and Schmidt, T. C. (2013). RIOT OS: Towards an OS for the 
Internet of Things. In INFOCOM 2013, Poster Session.
http://www.riot-os.org/. 

● [CoSenS] Nefzi, B. and Song, Y.-Q. (2010). CoSenS: a 
Collect- ing and Sending Burst Scheme for Performance 
Improvement of IEEE 802.15.4. In LCN ’10, pages 172–175. 
IEEE Computer Society.

http://www.riot-os.org/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

