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ESTIMATING END TO END (E2E) IN WSNS

� To be able to estimate the e2e delay in WSNs
< Measurement

◦ clock synchronization

◦ delay in terms of average delay but not the probability
distribution

< Simulation
◦ Normally not enough accurate (radio model, capture effect,

etc)

◦ Operating System not taken into account

< Analytic approach
◦ Due to stochastic nature of WSNs and underlying MAC

protocols: Markov chains
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SOME LIMITATIONS OF EXISTING MARKOV CHAIN

� Misic et al., Park et al.

� Existing models limited to one-hop transmission scenarios.

� Poisson distribution assumptions (arrival rate).

� Why we cannot extend existing models to consider
multi-hop transmission scenarios ?
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SOME LIMITATIONS (CONT)
� Underlying Operating System

< In our previous work 1 we shown that the underlying OS
introduces extra delays that affect the whole e2e delay

Conclusions
� Proposed models are normally abstraction of the reality

and sometimes not accurate for estimating performance
parameters.

� The extension of the proposed model for a real WSN
scenario is not straightforward (multi-hop scenario, for
instance).

1On the Gap Between Mathematical Modelling and Measurement
Analysis for Performance Evaluation of the 802.15.4 MAC Protocol - RTN
2013, Paris, France
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OBJECTIVE

� A novel approach
< We combine measurement-based and analytic approaches

based on process mining techniques for discovering a
Markov chain model.

◦ We discover a local Markov chain for each node.

◦ By analysing the MAC protocol execution log file.

◦ From this Markov chain we obtain the one-hop delay
distribution function in one node.

< A mathematical technique for estimating the e2e delay
distribution function.

◦ Based on one-hop delay distributions found previously.
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ONE-HOP DELAY FROM MARKOV CHAIN (1/4)

Figure: Markov chain (one node)

� From the empiricalMC we can
obtain:
< States and transitions of the

protocol.

< Probability transitions between
states.

< Sojourn time on each state Sk,
γSk

� Then is it possible to create the Adjacency matrix A

A =


0 ps1s2 es1 0 · · · 0
0 0 ps2s3 es2 · · · 0
...

... 0
. . .

...
0 0 0 · · · 0

 (1)
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ONE-HOP DELAY FROM MARKOV CHAIN (2/4)

Figure: Markov chain (one node)

A =


0 ps1s2 es1 0 · · · 0
0 0 ps2s3 es2 · · · 0
...

... 0
. . .

...
0 0 0 · · · 0



� Adjacency matrix A
< esk is the sojourn time

distribution γsk of state Sk in
frequency domain1 (Laplace
Transform). Negative
exponential distribution,

◦
esk =

γsk

γsk + s
(2)

< psk,sl is the probability transition
between states Sk and Sl.

1To avoid calculating convolutions over per-hop delay distribution
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ONE-HOP DELAY FROM MARKOV CHAIN (3/4)
� Being sf the final state (ACK RECEIVED), we compute

~Ar
sk,sf

= A · ~Ar−1
sk,sf

(3)

< where ~A1
sk,sf

is the vector containing the delay distribution
from state sk to sf , path length = 1.

� Begin si the initial state, Ar
si,sf

gives the delay distribution
from source to destination, path length = r, r = {1, 2, ...}.

� Then, the whole delay distribution in frequency domain
can be computed as follows:

Df−dom(s) =
∑
r=1

Ar
si,sf

(4)
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ONE-HOP DELAY FROM MARKOV CHAIN (4/4)
� By derivating Df−dom(s), we can obtain the average delay

in time domain

D̄ =
∂Df−dom(s)

∂s

∣∣∣∣
s=0

(5)

� By means of the Inverse Laplace Transform (ILT), we obtain
the delay distribution in time domain

Dt−dom(t) = ILT(Df−dom(s)) (6)
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ESTIMATING END TO END DELAY

N1 N2 Ny Nz

N1 Nj

Nk

Np

Ns

Nt Ny Nz

pjk

pjp

pjs

� The e2e delay distribution in
frequency domain (serial)
<

De2e(f−dom)(s) =

y∏
i=1

D(Ni)
f−dom(s)

� The e2e delay distribution in frequency domain (parallel)
<

De2e(f−dom)(s) =

j∏
i=1

D(Ni)
f−dom(s)·

(
s∑

i=k

pj,i ·D(Ni)
f−dom(s)

)
·

y∏
i=t

D(Ni)
f−dom(s)
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CONTRIBUTIONS

� X-MAC & RPL
< Dynamic routing.

< Tested in a Large-scale infrastructure (IoT-Senslab)

< Comparition between routing strategies in terms of e2e
delay.

� Two more contributions
< ContikiMAC

◦ IEEE DCOSS 2014, Marina del Rey, Californie, May 26 - 28.

< Standard IEEE 802.15.4 (slotted version)
◦ IEEE ISCC 2014, Madeira, Portugal, June 23-26.
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� X-MAC & RPL Scenario

< INRIA Rennes with 256 WSN430 open
nodes.

< Seven nodes from the testbed were
selected to carry out the experiments.

< Buffer size = 8.
Poisson arrival rate λ = 0.5, 1, 2, 4 p/s.
42 bytes (25 bytes of payload + 17
bytes of header).

� Two metrics of the RPL were considered
< RPL objective function 0 (OF0) (number of hops)

< RPL objective function ETX (Expected number of
transmissions)
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X-MAC & RPL � Average e2e delay (OF0 & ETX).
OF0 Emp. Global Av. Delay Theo. Global Av. Delay
λ One-Hop e2e One-Hop e2e

0.5 0,1409 0,2406 0,1408 0,2507
1 0,1507 0,2439 0,1488 0,2580
2 0,1556 0,2531 0,1518 0,2644
4 0,1864 0,3189 0,1846 0,3202

ETX Emp. Global Av. Delay Theo. Global Av. Delay
λ One-Hop e2e One-Hop e2e

0.5 0,1503 0,2497 0,1482 0,2516
1 0,1467 0,2427 0,1472 0,2530
2 0,1613 0,2605 0,1569 0,2717
4 0,1685 0,2981 0,1627 0,2870

� Packet reception rate for OF0 &
ETX.

OF0 ETX
λ PRR (%) PRR (%)

0.5 p/sec 97 98
1 p/sec 96 95
2 p/sec 33 35
4 p/sec 2.8 9.9
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X-MAC & RPL

Figure: Markov chain: λ = 4
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X-MAC & RPL

� PDF of the e2e delay
< From node 166 to the sink (145)

< For both RPL objective functions
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E2e delay distribution: OF0 and ETX for node 166 Hlambda = 4p�sL
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LIMITATIONS OF OUR METHODOLOGY

� Obtained model depends strictly on the input parameters
(traffic).
< To generate traces for several scenarios with different traffic

patterns to draw more general conclusions.

� It is imperative to have the source code of the protocol to
be able to instrument it.

� Code instrumentation using printf-like instructions affects
the execution timing and non-intrusive approaches are not
easy to implement.
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CONCLUSIONS

� Contributions
< A novel methodology to obtain a Markov chain model from

any MAC protocol by analysing execution traces.

< A mathematical technique for estimating the e2e delay
distribution in both one-hop and multi-hop transmission
scenarios.

< Our methodology is suitable for modelling WSNs in real
testbed scenarios taking into account, not only the
underlying duty-cycled MAC protocol, but also a dynamic
routing protocol.



Conclusions Questions

CONCLUSIONS

� Contributions
< A novel methodology to obtain a Markov chain model from

any MAC protocol by analysing execution traces.

< A mathematical technique for estimating the e2e delay
distribution in both one-hop and multi-hop transmission
scenarios.

< Our methodology is suitable for modelling WSNs in real
testbed scenarios taking into account, not only the
underlying duty-cycled MAC protocol, but also a dynamic
routing protocol.



Conclusions Questions

CONCLUSIONS

� Contributions
< A novel methodology to obtain a Markov chain model from

any MAC protocol by analysing execution traces.

< A mathematical technique for estimating the e2e delay
distribution in both one-hop and multi-hop transmission
scenarios.

< Our methodology is suitable for modelling WSNs in real
testbed scenarios taking into account, not only the
underlying duty-cycled MAC protocol, but also a dynamic
routing protocol.



Conclusions Questions

ONGOING WORK

� To study the influence of the arrival rate in the Markov
chain (generalization).

� Considering the independence of our methodology with
regard to the overlying routing protocol
< To compare routing protocol’s performance in terms of end

to end delay (RPL vs OC-Routing).



Conclusions Questions

ONGOING WORK

� To study the influence of the arrival rate in the Markov
chain (generalization).

� Considering the independence of our methodology with
regard to the overlying routing protocol
< To compare routing protocol’s performance in terms of end

to end delay (RPL vs OC-Routing).



Conclusions Questions

QUESTIONS ?


	Context
	Context & Motivation
	Existing Models
	Limitation of Existing Models

	Novel Methodology for Modelling WSNs
	Objectives
	On the road
	End to end delay estimation

	Results & Contributions
	Contributions

	Conclusions & Ongoing Work
	Conclusions
	Questions


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	anm4: 
	5.0: 
	5.1: 
	5.2: 
	5.3: 
	5.4: 
	5.5: 
	5.6: 
	5.7: 
	5.8: 
	5.9: 
	anm5: 
	6.0: 
	6.1: 
	6.2: 
	6.3: 
	6.4: 
	6.5: 
	6.6: 
	6.7: 
	6.8: 
	6.9: 
	anm6: 
	7.0: 
	7.1: 
	7.2: 
	7.3: 
	7.4: 
	7.5: 
	7.6: 
	7.7: 
	7.8: 
	7.9: 
	anm7: 
	8.0: 
	8.1: 
	8.2: 
	8.3: 
	8.4: 
	8.5: 
	8.6: 
	8.7: 
	8.8: 
	8.9: 
	anm8: 
	9.0: 
	9.1: 
	9.2: 
	9.3: 
	9.4: 
	9.5: 
	9.6: 
	9.7: 
	9.8: 
	9.9: 
	anm9: 
	10.0: 
	10.1: 
	10.2: 
	10.3: 
	10.4: 
	10.5: 
	10.6: 
	10.7: 
	10.8: 
	10.9: 
	anm10: 
	11.0: 
	11.1: 
	11.2: 
	11.3: 
	11.4: 
	11.5: 
	11.6: 
	11.7: 
	11.8: 
	11.9: 
	anm11: 
	12.0: 
	12.1: 
	12.2: 
	12.3: 
	12.4: 
	12.5: 
	12.6: 
	12.7: 
	12.8: 
	12.9: 
	anm12: 
	13.0: 
	13.1: 
	13.2: 
	13.3: 
	13.4: 
	13.5: 
	13.6: 
	13.7: 
	13.8: 
	13.9: 
	anm13: 
	14.0: 
	14.1: 
	14.2: 
	14.3: 
	14.4: 
	14.5: 
	14.6: 
	14.7: 
	14.8: 
	14.9: 
	anm14: 


