Extracting Markov Chain Models from Protocol Execution Traces for End to End Delay Evaluation in WSNs

> François Despaux Université de Lorraine IoT Lab Conference - Grenoble 2014

> > November 6, 2014

OUTLINE

Part 1 - Context

Part 2 - Novel Methodology for Modelling WSNs

-∢ ∃ ▶

Part 3 - Results & Contributions

Part 4 - Conclusions & Ongoing Work

Part I

Context

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

ESTIMATING END TO END (E2E) IN WSNS

- \succ To be able to estimate the e2e delay in WSNs
 - \succ Measurement
 - clock synchronization
 - delay in terms of average delay but not the probability distribution

ESTIMATING END TO END (E2E) IN WSNS

- \succ To be able to estimate the e2e delay in WSNs
 - ≽ Measurement
 - clock synchronization
 - delay in terms of average delay but not the probability distribution
 - ≽ Simulation
 - Normally not enough accurate (radio model, capture effect, etc)
 - Operating System not taken into account

◆□ ▶ ◆圖 ▶ ◆ 画 ▶ ◆ 画 → ○ ○ ○ ○ ○

ESTIMATING END TO END (E2E) IN WSNS

- \succ To be able to estimate the e2e delay in WSNs
 - ≽ Measurement
 - clock synchronization
 - delay in terms of average delay but not the probability distribution
 - ≽ Simulation
 - Normally not enough accurate (radio model, capture effect, etc)
 - Operating System not taken into account
 - \succ Analytic approach
 - Due to stochastic nature of WSNs and underlying MAC protocols: Markov chains

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

▶ ◀ ⋽ ▶

- \succ Misic et al., Park et al.
- > Existing models limited to one-hop transmission scenarios.
- > Poisson distribution assumptions (arrival rate).
- Why we cannot extend existing models to consider multi-hop transmission scenarios ?

Some Limitations (CONT)

- \succ Underlying Operating System
 - ➢ In our previous work ¹ we shown that the underlying OS introduces extra delays that affect the whole e2e delay

¹On the Gap Between Mathematical Modelling and Measurement Analysis for Performance Evaluation of the 802.15.4 MAC Protocol - RTN 2013, Paris, France

Some Limitations (CONT)

- \succ Underlying Operating System
 - \succ In our previous work ¹ we shown that the underlying OS introduces extra delays that affect the whole e2e delay

Conclusions

- Proposed models are normally abstraction of the reality and sometimes not accurate for estimating performance parameters.
- The extension of the proposed model for a real WSN scenario is not straightforward (multi-hop scenario, for instance).

¹On the Gap Between Mathematical Modelling and Measurement Analysis for Performance Evaluation of the 802.15.4 MAC Protocol - RTN 2013, Paris, France

- イ 印 ト イ 三 ト イ 三

Part II

Novel Methodology for Modelling WSNs

OBJECTIVE

- \succ A novel approach
 - We combine measurement-based and analytic approaches based on process mining techniques for discovering a Markov chain model.
 - We discover a local Markov chain for each node.
 - By analysing the MAC protocol execution log file.
 - From this Markov chain we obtain the **one-hop delay distribution function** in one node.

(4個) とうきとうき

OBJECTIVE

- \succ A novel approach
 - We combine measurement-based and analytic approaches based on process mining techniques for discovering a Markov chain model.
 - We discover a local Markov chain for each node.
 - By analysing the MAC protocol execution log file.
 - From this Markov chain we obtain the **one-hop delay distribution function** in one node.
 - A mathematical technique for estimating the e2e delay distribution function.
 - Based on one-hop delay distributions found previously.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

ONE-HOP DELAY FROM MARKOV CHAIN (1/4)

Figure: Markov chain (one node)

- \succ From the empirical \mathcal{MC} we can obtain:
 - \succ States and transitions of the protocol.
 - ➢ Probability transitions between states.
 - $\succ Sojourn time on each state S_k, \gamma_{S_k}$

• • • • • • • • • • • •

ONE-HOP DELAY FROM MARKOV CHAIN (1/4)

Figure: Markov chain (one node)

 \succ From the empirical \mathcal{MC} we can obtain:

- \succ States and transitions of the protocol.
- ➢ Probability transitions between states.
- $\succ Sojourn time on each state S_k, \gamma_{S_k}$
- \succ Then is it possible to create the Adjacency matrix \mathcal{A}

$$\mathcal{A} = \begin{pmatrix} 0 & p_{s_1 s_2} e_{s_1} & 0 & \cdots & 0 \\ 0 & 0 & p_{s_2 s_3} e_{s_2} & \cdots & 0 \\ \vdots & \vdots & 0 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$
(1)

ONE-HOP DELAY FROM MARKOV CHAIN (2/4)

Figure: Markov chain (one node)

$$\mathcal{A} = \begin{pmatrix} 0 & p_{s_1 s_2} e_{s_1} & 0 & \cdots & 0 \\ 0 & 0 & p_{s_2 s_3} e_{s_2} & \cdots & 0 \\ \vdots & \vdots & 0 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

\succ Adjacency matrix \mathcal{A}

 $\succ e_{s_k}$ is the sojourn time distribution γ_{s_k} of state S_k in frequency domain¹ (Laplace Transform). Negative exponential distribution,

$$e_{s_k} = \frac{\gamma_{s_k}}{\gamma_{s_k} + s} \tag{2}$$

 $\succ p_{s_k,s_l}$ is the probability transition between states S_k and S_l .

¹To avoid calculating convolutions over per-hop delay distribution 💿 🚊 ာ૧૯୯

ONE-HOP DELAY FROM MARKOV CHAIN (3/4)

≻ Being *s*_f the final state (ACK RECEIVED), we compute

$$\vec{\mathcal{A}}_{s_k,s_f}^r = \mathcal{A} \cdot \vec{\mathcal{A}}_{s_k,s_f}^{r-1}$$
(3)

< **∂** > < ∃ >

⇒ where \vec{A}_{s_k,s_f}^1 is the vector containing the delay distribution from state s_k to s_f , path length = 1.

ONE-HOP DELAY FROM MARKOV CHAIN (3/4)

≻ Being *s*_f the final state (ACK RECEIVED), we compute

$$\vec{\mathcal{A}}_{s_k,s_f}^r = \mathcal{A} \cdot \vec{\mathcal{A}}_{s_k,s_f}^{r-1} \tag{3}$$

⇒ where \vec{A}_{s_k,s_f}^1 is the vector containing the delay distribution from state s_k to s_f , path length = 1.

- ≻ Begin s_i the initial state, \mathcal{A}_{s_i,s_f}^r gives the delay distribution from source to destination, path length = $r, r = \{1, 2, ...\}$.
- ≻ Then, the whole delay distribution in frequency domain can be computed as follows:

$$D_{f-dom}(s) = \sum_{r=1} \mathcal{A}_{s_i, s_f}^r \tag{4}$$

<**A**₽ ► < ∃ ► <

ONE-HOP DELAY FROM MARKOV CHAIN (4/4)

 \succ By derivating $D_{f-dom}(s)$, we can obtain the average delay in time domain

$$\bar{D} = \frac{\partial D_{f-dom}(s)}{\partial s} \Big|_{s=0}$$
(5)

≻ By means of the *Inverse Laplace Transform (ILT)*, we obtain the delay distribution in time domain

$$D_{t-dom}(t) = ILT(D_{f-dom}(s))$$
(6)

ESTIMATING END TO END DELAY

 ≻ The e2e delay distribution in frequency domain (serial)
 ⇒

$$D_{e^{2e(f-dom)}}(s) = \prod_{i=1}^{y} D_{f-dom}^{(N_i)}(s)$$

 \succ The e2e delay distribution in frequency domain (parallel) \succcurlyeq

$$D_{e2e(f-dom)}(s) = \prod_{i=1}^{j} D_{f-dom}^{(N_i)}(s) \cdot \left(\sum_{i=k}^{s} p_{j,i} \cdot D_{f-dom}^{(N_i)}(s)\right) \cdot \prod_{i=t}^{y} D_{f-dom}^{(N_i)}(s)$$

(ロ > < 聞 > < 臣 > < 臣 > 臣 のへで

Part III

Results & Contributions

イロト イロト イヨト イヨト

CONTRIBUTIONS

- ≻ X-MAC & RPL
 - \succ Dynamic routing.
 - ➢ Tested in a Large-scale infrastructure (IoT-Senslab)
 - Comparition between routing strategies in terms of e2e delay.
- \succ Two more contributions
 - ≽ ContikiMAC
 - IEEE DCOSS 2014, Marina del Rey, Californie, May 26 28.
 - Standard IEEE 802.15.4 (slotted version)
 - IEEE ISCC 2014, Madeira, Portugal, June 23-26.

X-MAC & RPL

≻ X-MAC & RPL Scenario

- INRIA Rennes with 256 WSN430 open nodes.
- ➢ Seven nodes from the testbed were selected to carry out the experiments.

 \succ Buffer size = 8.

Poisson arrival rate $\lambda = 0.5, 1, 2, 4 \text{ p/s}$. 42 bytes (25 bytes of payload + 17 bytes of header).

X-MAC & RPL

≻ X-MAC & RPL Scenario

- INRIA Rennes with 256 WSN430 open nodes.
- Seven nodes from the testbed were selected to carry out the experiments.
- \succ Buffer size = 8.

Poisson arrival rate $\lambda = 0.5, 1, 2, 4 \text{ p/s}$. 42 bytes (25 bytes of payload + 17 bytes of header).

≻ Two metrics of the RPL were considered

- ▷ RPL objective function 0 (OF0) (number of hops)
- RPL objective function ETX (Expected number of transmissions)

X-MAC & RPL

≻ Average e2e delay (OF0 & ETX).

OF0	Emp. Global Av. Delay		Theo. Global Av. Delay	
λ	One-Hop	e2e	One-Hop	e2e
0.5	0,1409	0,2406	0,1408	0,2507
1	0,1507	0,2439	0,1488	0,2580
2	0,1556	0,2531	0,1518	0,2644
4	0,1864	0,3189	0,1846	0,3202

ETX	Emp. Global Av. Delay		Theo. Global Av. Delay	
λ	One-Hop	e2e	One-Hop	e2e
0.5	0,1503	0,2497	0,1482	0,2516
1	0,1467	0,2427	0,1472	0,2530
2	0,1613	0,2605	0,1569	0,2717
4	0,1685	0,2981	0,1627	0,2870

≻ Packet reception rate for OF0 & ETX.

	OF0	ETX
λ	PRR (%)	PRR (%)
0.5 p/sec	97	98
1 p/sec	96	95
2 p/sec	33	35
4 p/sec	2.8	9.9

X-MAC & RPL ARRIVAL

Figure: Markov chain: $\lambda = 4$

イロト イ理ト イヨト イヨト

æ

36%

X-MAC & RPL

64%

Topology (ETX)

≻ PDF of the e2e delay

- \succ From node 166 to the sink (145)
- \succ For both RPL objective functions

LIMITATIONS OF OUR METHODOLOGY

- > Obtained model depends strictly on the input parameters (traffic).
 - \succ To generate traces for several scenarios with different traffic patterns to draw more general conclusions.

LIMITATIONS OF OUR METHODOLOGY

- Obtained model depends strictly on the input parameters (traffic).
 - ➢ To generate traces for several scenarios with different traffic patterns to draw more general conclusions.
- ≻ It is imperative to have the source code of the protocol to be able to instrument it.

LIMITATIONS OF OUR METHODOLOGY

- Obtained model depends strictly on the input parameters (traffic).
 - ➢ To generate traces for several scenarios with different traffic patterns to draw more general conclusions.
- ≻ It is imperative to have the source code of the protocol to be able to instrument it.
- Code instrumentation using printf-like instructions affects the execution timing and non-intrusive approaches are not easy to implement.

イロト イロト イヨト イヨト

Part IV

Conclusions & Ongoing Work

CONCLUSIONS

\succ Contributions

➢ A novel methodology to obtain a Markov chain model from any MAC protocol by analysing execution traces.

CONCLUSIONS

\succ Contributions

- ➢ A novel methodology to obtain a Markov chain model from any MAC protocol by analysing execution traces.
- A mathematical technique for estimating the e2e delay distribution in both one-hop and multi-hop transmission scenarios.

CONCLUSIONS

≻ Contributions

- ➢ A novel methodology to obtain a Markov chain model from any MAC protocol by analysing execution traces.
- A mathematical technique for estimating the e2e delay distribution in both one-hop and multi-hop transmission scenarios.
- Our methodology is suitable for modelling WSNs in real testbed scenarios taking into account, not only the underlying duty-cycled MAC protocol, but also a dynamic routing protocol.

ONGOING WORK

≻ To study the influence of the arrival rate in the Markov chain (generalization).

ONGOING WORK

≻ To study the influence of the arrival rate in the Markov chain (generalization).

- ≻ Considering the independence of our methodology with regard to the overlying routing protocol
 - ➢ To compare routing protocol's performance in terms of end to end delay (RPL vs OC-Routing).

QUESTIONS?

